

**Economic Cooperation** 

Workshop on Reducing Food Loss and Waste through Packaging Innovations and Progress Review of FLW in the APEC Region

#### Member economy report: Progress review on FLW reduction

Philippines

DIONISIO G. ALVINDIA, Ph.D.

June 05 2025



Asia-Pacific Economic Cooperation

#### The Progress of Food Loss and Waste in the Philippines



## Under the Philippine National Climate Change Action Plan 2011–2028:

- 1. Develop "green cities and municipalities" by intensifying waste segregation at source, discard recovery, composting and recycling.
- 2. Formulate "climate-sensitive agriculture and fisheries policies, plans and program" under which the government intends to scale up best practices in agricultural and fisheries waste recycling and composting.



#### **Food Loss**

| Commodity           | Area covered | rea covered Year Loss percentage |            | Food supply stage               |
|---------------------|--------------|----------------------------------|------------|---------------------------------|
| Bananas             |              | 2022                             | 20.05%     | Whole supply chain <sup>+</sup> |
| Lettuce and chicory | Mindanao     | 2011                             | 11.50%     | Wholesale                       |
| Maize (corn)        |              | 2022                             | 14.69%     | Whole supply chain <sup>+</sup> |
|                     |              | 2011                             | 15%        | Whole supply chain              |
| Mangoes, guavas     | Bataan       | 2018                             | 9.26%      | Farm                            |
| and mangosteens     |              | 2018                             | 2.14%      | Transport                       |
|                     | Calabarzon   | 2018                             | 6.70%      | Wholesale                       |
|                     | Oriental     | 2018                             | 4.89%      | Farm, Sorting                   |
|                     | Mindoro      | 2018                             | 3.33%      | Transport                       |
|                     | Blumentritt  | 2018                             | 2.5 – 5.5% | Wholesale                       |
|                     | Divisoria    | 2018                             | 2.5 – 5.5% | Wholesale                       |
| Papayas             | Mindanao     | 2011                             | 15.30%     | Wholesale                       |
|                     |              | 2011                             | 40.10%     | Transport                       |

#### **Food Loss**

| Commodity | Area covered | Year | Loss percentage | Food supply stage               |
|-----------|--------------|------|-----------------|---------------------------------|
| Rice      |              | 2022 | 18.10%          | Whole supply chain <sup>†</sup> |
|           |              | 2013 | 2 – 6%          | Storage                         |
|           |              | 2013 | 3 – 10%         | Farm - Handling                 |
|           |              | 2013 | 1 – 5%          | Farm - Drying                   |
|           |              | 2013 | 2 – 6%          | Farm - Threshing                |
| Tomatoes  | Laguna       | 2018 | 0.28%           | Farm                            |
|           |              | 2018 | 0.60%           | Packing                         |
|           |              | 2018 | 3.60%           | Wholesale                       |
|           |              | 2018 | 1.48%           | Distribution                    |
|           | Mindanao     | 2011 | 10.80%          | Wholesale                       |

<sup>+</sup> Pastolero, A., and Sassi, M. (2022). Food loss and waste accounting: the case of the Philippine food supply chain. *Bio-based and Applied Economics* 11(3), 207–218. <u>https://doi.org/10.36253/bae-11501</u>.



#### **Food Waste**

|                            | Ton          | Kg/capita    |       |       |
|----------------------------|--------------|--------------|-------|-------|
|                            | 2019         | 2022         | 2019  | 2022  |
| Households                 | 9,334,476.59 | 2,954,580.30 | 84.57 | 25.57 |
| Out of Home<br>Consumption | 2,989,215.82 | 4,660,965.97 | 27.08 | 40.33 |
| Retail                     | 1,690,968.34 | 5,113,255.41 | 15.32 | 44.25 |



#### **Food Waste**

The UNEP Food Waste Index Report 2024 cites an unpublished UN Habitat report that shows data for household food waste for some provinces:

•

•

- Cagayan de Oro
- Legazpi

26 Kg/capita/year 33 Kg/capita/year

Ormoc

18 Kg/capita/year



From the FAO State of Food and Agriculture 2019, Table A6 (p.141), FLW Estimates from Grey Literature, [Economy] and Sectoral Reports between 2000 and 2017 are aggregated:

| Observation | rvation Mean |     | s.d. | Min. | Max. |  |
|-------------|--------------|-----|------|------|------|--|
| 17          | 6.9          | 8.4 | 4.4  | 1.0  | 15.5 |  |



| Commodity            | Production |       | Handling & Processir<br>Storage Packin |       | Ŭ     | Distribution |      | Consumption |      | Total FLW |       |       |
|----------------------|------------|-------|----------------------------------------|-------|-------|--------------|------|-------------|------|-----------|-------|-------|
|                      | 2015       | 2022  | 2015                                   | 2022  | 2015  | 2022         | 2015 | 2022        | 2015 | 2022      | 2015  | 2022  |
| Cereal               | 1,098      | 1,500 | 1,204                                  | 1,645 | 1,492 | 2,100        | 395  | 553         | 581  | 812       | 4,769 | 6,610 |
| Roots & Tubers       | 184        | 176   | 546                                    | 524   | 30    | 20           | 262  | 175         | 71   | 47        | 1,092 | 942   |
| Oilseeds &<br>Pulses | 726        | 717   | 1,157                                  | 1,143 | 48    | 78           | 28   | 39          | 14   | 19        | 1,973 | 1,996 |
| Vegetables           | 886        | 939   | 452                                    | 479   | 60    | 63           | 508  | 528         | 310  | 323       | 2,217 | 2,333 |
| Fruits               | 2,237      | 1,553 | 1,141                                  | 621   | 116   | 375          | 922  | 248         | 562  | 175       | 4,978 | 2,972 |
| Meat                 | 100        | 86    | 5                                      | 4     | 84    | 73           | 263  | 295         | 150  | 169       | 602   | 627   |
| Fish                 | 187        | 153   | 262                                    | 240   | 186   | 171          | 467  | 463         | 62   | 62        | 1,164 | 1,089 |
| Eggs                 | 42         | 66    | 0                                      | 0     | 0     | 0            | 11   | 20          | 7    | 13        | 61    | 99    |
| Milk                 | 1          | 1     | 1                                      | 2     | 0     | 0            | 11   | 343         | 1    | 34        | 14    | 380   |

Source: APEC-FLOWS. https://apec-flows.ntu.edu.tw/database.aspx



### Actions

- Several bills for food waste reduction have been proposed in the legislature since 2016 (Santiano 2024), the most recent one was the Zero Food Waste Act of 2022 (Senate Bill No. 240) (Austria 2023), but none have passed into law.
- 2. "Although there are no laws in the country exactly like the ones implemented in France, there is one that merely *encourages* the donation of food for charitable purposes, which is <u>Republic Act No. 9803</u>, also known as the 'Food Donation Act of 2009'" (Santiano 2024), which states on Section 2 thereof that the purpose of encouraging food donations is to "alleviate [Philippine] poverty and reduce food wastage"



### Actions

3. Private initiatives: Ajinomoto Philippines Corporation reduce food loss by through, for instance, "recovery of fermentation liquids left over from making [its] umami seasoning, which are then used as organic fertilizer and animal feed." Then, to tackle food waste, the company launched a "TOO GOOD TO WASTE" campaign in the Philippines "to raise awareness and offer food loss and food waste solutions..., providing recipes that use leftover ingredients, and helping consumers enjoy delicious food while doing something good for the planet." (https://www.ajinomoto.com.ph/nutrition/too-good-to-waste-food-loss-and-food-waste-reduction-for-a-sustainable-future/)



### **Updates/Revisions**



| CROP  | LOSS (%)<br>(based on the data<br>gathered from the field)                                                                   | CAUSES                                                                                                                                                                                   | TOTAL PRODUCTION<br>(MT)<br>(based on the year<br>the loss data were<br>gathered) | ESTIMATED LOSS                                   |                                                                              | PROPOSED INTERVENTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MANGO | 28.65%<br>(Perceived<br>Postproduction Losses,<br>2023)<br>17.75%<br>(Actual Postproduction<br>Losses, Peak season,<br>2024) | Insect damage,<br>cracks,<br>harvesting injury,<br>deformed,<br>silay/ripened,<br>immature fruit,<br>bumps, weight loss,<br>latex burn,<br>compression,<br>anthracnose, stem-<br>end rot | 651,886.34 MT<br>(PSA, 2023)                                                      | 186,765.4 MT<br>(2023)<br>115,709.8 MT<br>(2024) | • ()<br>• ()<br> <br> | Establishment of postharvest facilities<br>such as Hot Water Treatment (HWT) and<br>Vapor Heat Treatment (VHT);<br>Capacity building through information<br>dissemination on Good Agricultural<br>Practices (GAP), proper post-production<br>handling practices, effective<br>management of pests and diseases of<br>mango;<br>Provision of government aid in the form<br>of production inputs and financing<br>services/ loans; implementation of policy<br>and regulations in establishing buying<br>and selling price. |

14

| CROP                     | LOSS (%)<br>(based on the data<br>gathered from the field)  | CAUSES                                                                                                                                                                                                          | TOTAL PRODUCTION<br>(MT)<br>(based on the year<br>the loss data were<br>gathered) | ESTIMATED LOSS                | PROPOSED INTERVENTION                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ONION<br>(BULB<br>ONION) | <b>31.49%</b><br>(Actual Postproduction<br>Losses, 2014):   | Immature, 'hubad'<br>unharvested, cut,<br>discolored,<br>"kambalan", weight<br>loss, rotten, 'lapis',<br>pickles, oversized,<br>sprouting, Rotten,<br>immature, mechanical<br>damage, weight loss,<br>sprouting | <b>203,651.41 MT</b> (PSA, 2014)                                                  | <b>64,129.83 MT</b><br>(2014) | <ul> <li>Pilot testing of a ten-row mechanical seeder,</li> <li>Development of planting systems that will<br/>reduce seed requirement;</li> <li>Localization of imported harvester and de-<br/>topping machines and adaptation to the<br/>present production practices of the local onion<br/>farmers (e.g., distance of planting and bulb<br/>sizes; absence of bulb curing);</li> </ul> |
|                          | <b>29.01%</b><br>(Perceived Postproduction<br>Losses, 2022) |                                                                                                                                                                                                                 | <b>241,033.06 MT</b><br>(PSA, 2022)                                               | <b>69,923.69 MT</b><br>(2022) | <ul> <li>Improve the PHilMech onion sorter;</li> <li>Localization of imported onion sorter to adapt to the present practices of the traders;</li> </ul>                                                                                                                                                                                                                                   |

| CROP                     | LOSS (%)<br>(based on the data<br>gathered from the field) | CAUSES | TOTAL PRODUCTION<br>(MT)<br>(based on the year<br>the loss data were<br>gathered) | ESTIMATED LOSS | PROPOSED INTERVENTION                                                                                                                                                                                                                                                                                                                  |
|--------------------------|------------------------------------------------------------|--------|-----------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ONION<br>(BULB<br>ONION) |                                                            |        |                                                                                   |                | <ul> <li>Information dissemination on the comparison<br/>of adopting high-temperature and cold-storage<br/>technologies in terms of cost and return to<br/>provide farmers with bases in making better<br/>marketing decisions;</li> </ul>                                                                                             |
|                          |                                                            |        |                                                                                   |                | <ul> <li>Comparative study of storing cured and<br/>uncured bulb onions in cold storage in terms<br/>of reducing losses and cost and returns;</li> <li>Application of Biological Control Agents<br/>(BCAs) and integrated pest management<br/>practices to prevent bulb rot diseases and<br/>control armyworm infestations;</li> </ul> |
|                          |                                                            |        |                                                                                   |                | • Strengthen market linkages between onion growers and buyers to establish stable and transparent pricing mechanism                                                                                                                                                                                                                    |



| CROP                     | LOSS (%)<br>(based on the data<br>gathered from the field) | CAUSES | TOTAL PRODUCTION<br>(MT)<br>(based on the year<br>the loss data were<br>gathered) | ESTIMATED LOSS | PROPOSED INTERVENTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------|------------------------------------------------------------|--------|-----------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ONION<br>(BULB<br>ONION) |                                                            |        |                                                                                   |                | <ul> <li>Evaluate the effectiveness and feasibility of drip irrigation systems for onion cultivation in local conditions;</li> <li>Promote the adoption of IPM practices among onion farmers through training and awareness programs;</li> <li>Encourage farmers to conduct soil testing to determine nutrient requirements;</li> <li>Development of a village-level cold storage facility. Establish small-scale cold storage units in onion growing areas to provide farmers with accessible and affordable storage options.</li> </ul> |

|   | CROP      | LOSS (%)<br>(based on the data<br>gathered from the field)  | CAUSES                                                   | TOTAL PRODUCTION<br>(MT)<br>(based on the year<br>the loss data were<br>gathered) | ESTIMATED LOSS | PROPOSED INTERVENTION                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|-----------|-------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ( | CALAMANSI | <b>14.76%</b><br>(Perceived Postproduction<br>Losses, 2022) | Insect damage,<br>Browning, Bruising,<br>Yellowing, Cuts | <b>107,896.35 MT</b> (PSA, 2022)                                                  | 15,925.5 MT    | <ul> <li>Use of Modified Atmosphere Packaging (MAP) as an alternative method to extend postharvest life;</li> <li>Capacity building through information dissemination on proper handling practices during harvesting, proper grading and standards;</li> <li>Provision of wooden or plastic crates for bulk packaging;</li> <li>Price watch by DTI and DA representatives to regularly inform the farmers on possible prices of calamansi on daily basis.</li> </ul> |



| CROP                | LOSS (%)<br>(based on the data<br>gathered from the field)                                                                              | CAUSES                                                                                                                               | TOTAL PRODUCTION<br>(MT)<br>(based on the year<br>the loss data were<br>gathered) | ESTIMATED LOSS                                  | PROPOSED INTERVENTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BANANA<br>(CARDAVA) | <ul> <li>14.93%<br/>(Actual Postproduction<br/>Losses, 2014)</li> <li>13.71%<br/>(Perceived Postproduction<br/>Losses, 2022)</li> </ul> | Immature (1-2 bottom<br>hands of the bunch),<br>Cuts, Detached<br>fingers, Deformed,<br>Diseased or 'Bugtok',<br>Weight loss, Rotten | <b>2,567,494.95 MT</b><br>(PSA, 2014)<br><b>2,522,309.60 MT</b><br>(PSA, 2022)    | 383,327 MT<br>(2014)<br>345,808.65 MT<br>(2022) | <ul> <li>Provision of training on cultural management<br/>on the banana pests and diseases;</li> <li>Dissemination of information on the benefits<br/>of practicing Good Agricultural Practices<br/>(GAP);</li> <li>Adaptation of the farmer invented de-handing<br/>tool, a fabricated scoop over the practice of<br/>using bolo;</li> <li>Creation of tramline for hauling and transport<br/>especially for sloping areas;</li> <li>Development of partial shade in the assembly<br/>areas;</li> <li>Provision of stackable plastic crates as<br/>transport containers to provide adequate<br/>protection during transport.</li> </ul> |

ADEC

| CROP     | LOSS (%)<br>(based on the<br>data gathered<br>from the field) | CAUSES                                                                                                                                                 | TOTAL<br>PRODUCTION<br>(MT)<br>(based on the<br>year the loss<br>data were<br>gathered) | ESTIMATED<br>LOSS | EXPORTS                       | PER CAPITA<br>CONSUMPTION | TOTAL<br>CONSUMPTION<br>(Population)                                       | DEFICIT/<br>SURPLUS | PROPOSED INTERVENTION                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------|-------------------------------|---------------------------|----------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BROCCOLI | 18.08%<br>(Perceived<br>Postproduction<br>Losses, 2020)       | Immature,<br>hollow stem,<br>insect damage.<br>overmature,<br>loose curd,<br>yellowing,<br>decay/ rot,<br>weight loss,<br>compression,<br>cracks, cuts | 3,339.35 MT<br>(PSA, 2020)                                                              | 603.75 MT         | Less than 1 MT<br>(PSA, 2020) | 0.03 KG/CAPITA            | 3,271.00 MT<br>(population<br>based on PSA<br>2020 that is<br>109,033,245) | -536.4 MT           | <ul> <li>Development of mechanized<br/>planting and harvesting of<br/>broccoli suitable in Benguet<br/>terrain;</li> <li>Development of sustainable<br/>irrigation system in the area;</li> <li>Concerned DA units to<br/>organize and conduct training<br/>on postharvest handling of<br/>vegetables among farmers;</li> <li>Development of the market<br/>through supply chain<br/>improvement.</li> </ul> |



| CROP    | LOSS (%)<br>(based on the<br>data gathered<br>from the field)   | CAUSES                                                                    | TOTAL<br>PRODUCTION<br>(MT)<br>(based on the<br>year the loss<br>data were<br>gathered) | ESTIMATED<br>LOSS | EXPORTS                                     | PER CAPITA<br>CONSUMPTION                   | TOTAL<br>CONSUMPTION<br>(Population)                                               | DEFICIT/<br>SURPLUS  | PROPOSED INTERVENTION                                                                                                                                                                                                                                                                                                                        |
|---------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------|---------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CARROTS | <b>44.45%</b><br>(Actual<br>Postproductio<br>n Losses,<br>2019) | Over-mature,<br>weight loss,<br>mechanical<br>damage,<br>insect<br>damage | <b>65,069.67</b><br><b>MT</b> (PSA, 2019)                                               | 28,923.47<br>MT   | <b>Less than 1</b><br><b>MT</b> (PSA, 2020) | 0.49KG/CAPI<br>TA (PSA's SFD,<br>2015-2016) | <b>53,426.29 MT</b><br>(population<br>based on PSA<br>2020 that is<br>109,033,245) | -<br>17,279.09<br>MT | <ul> <li>Training courses and<br/>seminars regarding good<br/>agriculture practice and<br/>IPM;</li> <li>Provision of solar water<br/>pump and rain collection<br/>system;</li> <li>Provision of storage<br/>facilities;</li> <li>Seminar/training on proper<br/>handling of carrots;</li> <li>Training on carrot<br/>processing;</li> </ul> |



| CROP | LOSS (%)<br>(based on the<br>data gathered<br>from the field) | CAUSES                                                                                | TOTAL<br>PRODUCTION<br>(MT)<br>(based on the<br>year the loss<br>data were<br>gathered) | ESTIMATED<br>LOSS | EXPORTS                                        | PER CAPITA<br>CONSUMPTION | TOTAL<br>CONSUMPTION<br>(Population)                                               | DEFICIT/<br>SURPLUS | PROPOSED INTERVENTION                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------|------------------------------------------------|---------------------------|------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 19.50%<br>(Perceived<br>Postproducti<br>on Losses,<br>2020)   | Insect<br>damage,<br>small curd,<br>immature,<br>over-<br>mature,<br>wilted<br>leaves | <b>11,983.20</b><br><b>MT</b> (PSA, 2020)                                               | 2,336.72 MT       | <b>Less than</b><br><b>1 MT</b> (PSA,<br>2020) | 0.1 KG/<br>CAPITA         | <b>10,903.32 MT</b><br>(population<br>based on PSA<br>2020 that is<br>109,033,245) | -1,257.84<br>MT     | <ul> <li>Installment of cost efficient<br/>irrigation facilities or use of<br/>low-priced technology for<br/>diverting water for<br/>irrigation purposes;</li> <li>Seminar/training on<br/>preparation and use of<br/>organic pesticides and<br/>insecticides;</li> <li>Improvement of varieties<br/>with enhanced resistance to<br/>priority pests and diseases;</li> <li>Development of sustainable<br/>seed/planting material<br/>system</li> </ul> |

| CROP            | LOSS (%)<br>(based on the<br>data gathered<br>from the field)      | CAUSES                                                                                                                                                             | TOTAL<br>PRODUCTION<br>(MT)<br>(based on the<br>year the loss<br>data were<br>gathered) | ESTIMATED<br>LOSS | EXPORTS                                           | PER CAPITA<br>CONSUMPTION                      | TOTAL<br>CONSUMPTION<br>(Population)                                               | DEFICIT/<br>SURPLUS | PROPOSED INTERVENTION                                                                                                                                                                                       |
|-----------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------|---------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SWEET<br>POTATO |                                                                    |                                                                                                                                                                    |                                                                                         |                   | Less than<br>1 MT<br>(PSA,<br>2020)               | 4.53<br>KG/CAPITA<br>(PSA's SFD,<br>2015-2016) | 493,920.60 MT<br>(population<br>based on PSA<br>2020 that is<br>109,033,245)       |                     |                                                                                                                                                                                                             |
| WHITE<br>POTATO | <b>21.82%</b><br>(Perceived<br>Postproducti<br>on Losses,<br>2020) | Immature,<br>deformed,<br>scab, greening,<br>overmature,<br>soft rot,<br>bacterial wilt,<br>Rhizoctonia,<br>weight loss,<br>compression<br>damage,<br>cracks, cuts | <b>113, 562.36</b><br><b>MT</b> (PSA, 2020)                                             | 24,779.31<br>MT   | <b>Less than</b><br><b>1 MT</b><br>(PSA,<br>2020) | 0.91<br>KG/CAPITA<br>(PSA's SFD,<br>2015-2016) | <b>99,220.25 MT</b><br>(population<br>based on PSA<br>2020 that is<br>109,033,245) | -10,438.20<br>MT    | <ul> <li>Development of<br/>mechanized planting<br/>and harvesting of<br/>potato suitable in<br/>Benguet terrain;</li> <li>Development of<br/>sustainable<br/>seed/planting material<br/>system;</li> </ul> |



| CROP | LOSS (%)<br>(based on the<br>data gathered<br>from the field) | CAUSES | TOTAL<br>PRODUCTION<br>(MT)<br>(based on the<br>year the loss<br>data were<br>gathered) | ESTIMATED<br>LOSS | EXPORTS | PER CAPITA<br>CONSUMPTION | TOTAL<br>CONSUMPTION<br>(Population) | DEFICIT/<br>SURPLUS | PROPOSED INTERVENTION                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|---------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------|-------------------|---------|---------------------------|--------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                               |        |                                                                                         |                   |         |                           |                                      |                     | <ul> <li>Financial support by<br/>government-regulated<br/>lending institutions that can<br/>offer lower interest rates;</li> <li>Development of eco-<br/>friendly pest management<br/>systems;</li> <li>Concerned units of the DA<br/>to organize and conduct<br/>trainings on good<br/>postharvest practices to<br/>improve and retain the<br/>productivity of stored<br/>tubers/planting materials.</li> <li>Appropriate storage<br/>technology.</li> </ul> |



| CROP    | LOSS (%)<br>(based on the<br>data gathered<br>from the field)    | CAUSES                                                                                                               | TOTAL<br>PRODUCTION (MT)<br>(based on the year<br>the loss data were<br>gathered) | ESTIMATED<br>LOSS | EXPORTS                             | PER CAPITA<br>CONSUMPTION                                    | TOTAL<br>CONSUMPTION<br>(Population)                                                          | DEFICIT/<br>SURPLUS | PROPOSED INTERVENTION                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------|-------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CABBAGE | <b>16.75%</b><br>(Perceived<br>Postproduction<br>s Losses, 2020) | Insect<br>damage,<br>decay/soft<br>rot, weight<br>loss,<br>compressi<br>on<br>damage,<br>torn<br>leaves,<br>bruising | <b>129,803.39 MT</b><br>(PSA, 2020)                                               | 21,742.07<br>MT   | Less than<br>1 MT<br>(PSA,<br>2020) | <b>1.13</b><br><b>KG/CAPITA</b><br>(PSA's SFD,<br>2015-2016) | <b>123,207.57</b><br><b>MT</b><br>(population<br>based on PSA<br>2020 that is<br>109,033,245) | -13,652.51<br>MT    | <ul> <li>Development of mechanized planting and harvesting of cabbage suitable in Benguet terrain;</li> <li>Development of eco-friendly pest management systems;</li> <li>Provision of trainings and seminars on how do farmers control and manage insect pests and diseases of cabbage;</li> <li>Improvement of varieties with enhanced resistance to priority pests and diseases</li> <li>Municipal ordinance re: proper use of pesticides</li> </ul> |



#### SUMMARY OF PADDY/RICE POSTPRODUCTION LOSSES

Table 1. Paddy/rice postproduction losses (harvesting to milling), 2008-2009

| POSTPRODUCTION OPERATION | MEAN LOSS (%) |
|--------------------------|---------------|
| Manual Harvesting        | 2.03          |
| Piling                   | 0.08          |
| Mechanical Threshing     | 2.18          |
| Sundrying                | 5.86          |
| Storage                  | 0.80          |
| Milling                  | 5.52          |
| TOTAL                    | 16.47         |

Source: Salvador, A.R., D.R. Miranda, V.E.B. Camaso, R.Q. Gutierrez and R.R. Paz. 2012. Assessment of the State and Magnitude of the Paddy Grains Postproduction Losses in Major Rice Production Areas. PHilMech Journal Socio-Economic and Policy Research. 2(1): 19-37.



#### SUMMARY OF PADDY/RICE POSTPRODUCTION LOSSES

Table 2. On-farm paddy postproduction losses (manual harvesting to sundrying), 2016-2017

| POSTPRODUCTION OPERATION | MEAN LOSS (%) |
|--------------------------|---------------|
| Manual Harvesting        | 2.72          |
| Piling                   | 0.04          |
| Mechanical Threshing     | 1.91          |
| Sundrying                | 3.52          |
| TOTAL                    | 8.19          |

Source: Salvador, A.R and M.M.N. Dulay. 2020. Effect of Mechanization to the Paddy Postharvest Losses. Asian Journal of Postharvest and Mechanization. 3(1): 76-86.



#### SUMMARY OF PADDY/RICE POSTPRODUCTION LOSSES

Table 3. Updated paddy postproduction losses (manual harvesting up to milling), 2017

| POSTPRODUCTION OPERATION | <b>POSTPRODUCTION LOSSESS (%)</b> |
|--------------------------|-----------------------------------|
| Manual Harvesting        | 2.72                              |
| Piling                   | 0.04                              |
| Mechanical Shelling      | 1.91                              |
| Sundrying                | 3.52                              |
| Storage                  | 0.80*                             |
| Milling                  | 5.52**                            |
| TOTAL                    | 14,51                             |

\*\*Storage and milling losses based on 2008-2009 loss figures



#### SUMMARY OF PADDY/RICE POSTPRODUCTION LOSSES

Table 4. Paddy postproduction losses using rice combine and mechanical dryer, 2016-2017

| PH MACHINES/FACILITIES | MEAN LOSS (%) |
|------------------------|---------------|
| Rice Combine Harvester | 2.59          |
| Mechanical Dryer       | 1.85          |

Source: Salvador, A.R and M.M.N. Dulay. 2020. Effect of Mechanization to the Paddy Postharvest Losses. Asian Journal of Postharvest and Mechanization. 3(1): 76-86.



#### SUMMARY OF PADDY/RICE POSTPRODUCTION LOSSES

 Table 5. Milling losses per type of rice mill, 2018-2019

| RICE MILL   | MILLING   | LOSSES  |
|-------------|-----------|---------|
|             | Range     | Average |
| Single Pass | 1.96-9.68 | 4.53    |
| Multipass   | 0.06-2.47 | 0.48    |

Source: Salvador, A.R, D.J.N. Bernardo and C.M.S. Palma. 2021. Assessment of the Rice Milling System. Unpublished terminal report. DA-PHilMech, Science City of Muñoz, Nueva Ecija, Phils.



#### SUMMARY OF CORN POSTPRODUCTION LOSSES

**Table 6**. Summary of yellow corn postproduction losses, 2005-2006 & 2019-2020

| POSTPRODUCTION OPERATION | <b>POSTPRODUCTION LOSSESSN (%)</b> |                         |  |  |
|--------------------------|------------------------------------|-------------------------|--|--|
| POSTFRODUCTION OF LIAMON | 2005-2006 <sup>1</sup>             | 2019-20202 <sup>2</sup> |  |  |
| Manual Harvesting        | 1.05                               | 1.25                    |  |  |
| Piling                   | 0.00                               | 0.18                    |  |  |
| Mechanical Threshing     | 0.52                               | 0.41                    |  |  |
| Sundrying                | 4.54                               | 3.52*                   |  |  |
| Hauling Marketing        | 0.56                               | 0.56**                  |  |  |
| Storage                  | 0.51                               | 0.51**                  |  |  |
| TOTAL                    | 7.18                               | 6.43                    |  |  |

Source: <sup>1</sup> Salvador, A.R, H.G.Malanon, G.B. Calica, P.C.Castillo, R.O. Vereña and R.S. Rapusas. 2012. Quantitative and Qualitative Assessment of Corn Postharvest Losses. PHilMech Journal Socio-Economic and Policy Research. 2(1). 38-53.

<sup>2</sup> Salvador, A.R., K.R.Lingbawan and D.J.N. Bernardo. 2021. On-Farm Postproduction Loss Assessment of Yellow Corn. Unpublished terminal report. DA-PHilMech, Science City of Muñoz, Nueva Ecija, Phils.



#### SUMMARY OF CORN POSTPRODUCTION LOSSES

Table 7. On-farm white corn postproduction losses, August to October 2019

| POSTPRODUCTION OPERATION | MEAN LOSS (%) |
|--------------------------|---------------|
| Manual Harvesting        | 2.94          |
| Piling                   | 0.01          |
| Mechanical Shelling      | 0.76          |
| Sundrying                | 3.31*         |
| TOTAL                    | 7.02          |

\*3.28 due to over drying

Note: Loss measurement conducted in one season only (2019) due to pandemic

Source Salvador, A.R., M.M. Dulay and C.M.S. Palma. 2021. On-Farm Postproduction Loss Assessment of White Corn. Unpublished terminal report. DA-PHilMech, Science City of Muñoz, Nueva Ecija, Phils.



### Actions

- With the above presented level of PH losses across the Philippine staple and food commodities, policies, programs, projects and interventions are already being implemented at the R4D level, extension and commercialization level under the Food security thematic program; This includes the Rice Competitiveness Enhancement Fund Program, the Coconut Farmers Industry Development Program, and the upcoming Corn Competitiveness Enhancement Fund (CCEF), the livestock, Salt, and Sugarcane;
- At the food waste level, which starts from the retail markets up the consumer level, the information under Philippine conditions is still scarce, and therefore should be handled by the appropriate agencies of the government (i.e. FNRI, PSA, DOH, etc.) to map out the complete picture of FLW of the Philippines;



#### **Policies and Recommendations**

- Continuous and sustained active participation of the Philippines in this APEC regional and international levels of initiatives and programs as it would promote not only the significant role of the economy, local awareness in this global concern but more importantly harness the potential of promoting and creating a market of our local food products and by-products to support and sustain our local farmers and industries;
- Adopt some of the corporate social responsibility (CSR) models like the ones implemented by Peru in their Food Rescue Program that successfully served a critical mass of their marginal population;



#### **Policies and Recommendations**

- Such a model can be replicated under the "Kadiwa" program that is fully supported and recognized by the Office of the President which can be used to leverage for financial and policy support;
- We can capitalize on this program to pilot at least one project in, say one in each major island (Luzon, Visayas, Mindanao models) to capture the diversity of population, culture, geographic challenges, natural endowment, political biases, and other factors that can be considered as drivers/barriers of the success/failure of implementing such program;
- This initiative should be well-described under the Food Sufficiency and Security campaign of the domestic government where the Department of Agriculture plays a major role;





# Thank you!